Evaluation of Hydrogen Production Cycles Based on Efficiency

Ch E 4273 Senior Design Spring 2007

Purpose

Develop and implement a method of ranking water-splitting cycles

Outline

Importance of Hydrogen
Thermochemical/Hybrid Cycles
Current Methods of Evaluation
Our Methodology based on Efficiency
Results

Hydrogen Economy

Advantages
Disadvantages
Methods for producing hydrogen
Other suggested economy types

Hydrogen Economy

The current U.S. demand ⁺ – 11 MM tons/yr total

- Crude lightening
- Produce cleaner-burning fuels
- Methanol/Ammonia production
- Steam reformation of methane
- Demand in Hydrogen Economy ⁺
 - 200 MM tons/yr for transportation
 - 450 MM tons/yr for all other energy needs

[†] K. R. Schultz 2003, General Atomics, DOE grant

Water-Splitting Cycles

 $H_2 O \Leftrightarrow H_2 + \frac{1}{2}O_2$

Only products are hydrogen and oxygen

- Only reactant is water
- Other species form and breakdown in a cyclic manner, non-effluent

Water Splitting Cycles

Thermochemical Cycles

 Thermochemical reactions only

 Hybrid Cycles

 Thermochemical reactions
 Electrochemical reactions

 Some could benefit from nuclear plant heat sources
 Over 200 known cycles

Water Splitting Cycles

Thermochemical Reactions

- Established equipment in industry
- Often require high temperatures
- Electrochemical Reactions
 - More rare in industry
 - Difficult to implement
 - Occur at lower temperatures

Water Splitting Cycle Examples

■ Hallett Air Products (hybrid) $Cl_2 + H_2O \xrightarrow{1123K} 2HCl + \frac{1}{2}O_2$ $2HCl \xrightarrow{298K} Cl_2 + H_2$

US Chlorine (thermochemical)

 $\begin{aligned} Cl_2 + H_2O & \xrightarrow{1123K} 2HCl + \frac{1}{2}O_2 \\ 2CuCl_2 & \xrightarrow{773K} 2CuCl + Cl_2 \\ 2CuCl + 2HCl & \xrightarrow{473K} 2CuCl_2 + H_2 \end{aligned}$

Water Splitting Cycle Example Hallett Air Products (hybrid)

Water Splitting Cycle Example US Chlorine (thermochemical)

Reaction 1 – Thermochemical Cl₂ + H₂O → 2HCI + 1/2 O₂ 1123 K

Reaction 2 – Thermochemical 2CuCl₂ → 2CuCl + Cl₂ 773 K

Reaction 3 – Thermochemical 2CuCl + 2HCl → 2CuCl₂ + H₂ 473 K

Issues

Coupled reactions

- Cyclic Process- Degrees of freedom

Special reaction methods (high $\Delta G>0$)

- Electrolysis
- Continuous product removal
- Reaction Equilibrium
 - Reversibility
 - Equilibrium conversion
- Separation Energy (heat and work) may complicate the flowsheet

Prior Evaluation Efforts

L.C. Brown (2000, DOE) scored cycles based on known characteristics

- Qualitative approach
- Questionable evaluation technique
 - Point system for process complexities
 - Equal weighting assigned to all criteria
 - "Judgment call" basis
 - Heavily favors well-researched cycles

Prior Evaluation Efforts

		1		
Metric ↓ Score ⇒	0	1	2	3
1. Number of chemical reactions	6	-	-	5
 Number of chemical separation steps 	10	9	8	7
3. Number of elements - 2	7		6	-
 Least abundant element in process 	Ir	Rh, Te, Os, Ru, Re, Au	Pt, Bi, Pd, Hg, Se	Ag, In, Cd, Sb, Tm, Tl, Lu
 Relative corrosiveness of process solutions[†] 	Very con aqua	rosive, e.g. regia		

Prior Evaluation Efforts

Lewis (2005, DOE) evaluated cycles based on efficiency

- Quantitative approach
- Considers equilibrium
- Assumes 50% efficiency for all work processes
 - Actual efficiency may be better or worse
 - Different processes have different efficiencies

Our Proposed Solution

Efficiency Based Ranking System: Find maximum possible efficiency Pinch technology to determine hot utility Stream analysis Heat of reaction Estimate work required Consider reaction equilibrium DOF: optimize flow rates and temperatures

Cycle Efficiency

$$\eta = -\frac{\Delta H_{H_2O} \circ (298K)}{Q + W}$$

Enthalpy of formation of water is minimum energy required for water-splitting

Cycle Efficiency

Only heat and work transferred across system boundary included Heat term – Hot utility Heat for separations Work term - Pump/compressor work Electrical work in electrolysis

Equilibrium

 $\Delta G = \sum v_i \left(\mu_i^{\circ} + RT \ln a_i \right)$

Setting ΔG_{RXN} equal to zero gives the following,

$$K_{EQ} = \exp\left(-\frac{\Delta G_{Rxn}^{\circ}}{RT}\right)$$

 $K_{EQ} = \prod a_i^{v_i}$

Equilibrium Sulfur Iodine – Reaction 1 (1123 K) $H_2SO_4(v) \xrightarrow{1123K} SO_2(v) + H_2O(v) + \frac{1}{2}O_2(v)$ $K_{1}(T_{1}) = \frac{n_{SO_{2}} n_{H_{2}O} n_{O_{2}}^{.5} \cdot P^{1.5}}{n_{H_{2}SO_{4}} (n_{H_{2}SO_{4}} + n_{SO_{2}} + n_{H_{2}O} + n_{O_{2}})^{1.5}}$

• Relate number of moles to conversion $n_i = n_{i,o} + v_i X_i \implies K_1(T_1) = f(X)P^{1.5}$

Excess Reactants

Two primary options of handling

- Recycle
 - Increases separation requirement
 - Strategic product placement

No Recycle

- Increases heat requirement
- 2 configurations for cycles with 3 or more reactions

No Recycle Handling

Sulfur Iodine Cycle:

 $2\mathrm{HI} \xrightarrow{\mathrm{T}=723\mathrm{K}} \mathrm{I}_{2} + \mathrm{H}_{2}$

 $I_2 + SO_2 + 2H_2O \xrightarrow{T=393K} 2HI + H_2SO_4$

Strategic Separation

Minimum Separation

Strategic Separation

Minimum Separation

Degrees of Freedom

Caused by linearly dependent equationsAssume design parameters to define system

Hallett Air Products

 $Cl_{2} + H_{2}O \xrightarrow{1123K} 2HCl + \frac{1}{2}O_{2}$ $2HCl \xrightarrow{298K} Cl_{2} + H_{2}$

Degree of Freedom

Reaction #1: $K_{1}(T_{1}) = \frac{n_{HCl,1}^{2} n_{O_{2},1}^{.5}}{n_{Cl_{2},1} n_{H_{2}O,1} [n_{Cl_{2},1} + n_{H_{2}O,1} + n_{HCl,1} + n_{O_{2},1}]^{.5}} P^{0.5}$ $n_{H_2O,1} = n_{H_2O,0} - \xi_1$ $n_{O_2,1} = 0.5\xi_1$ $n_{Cl_2,1} = n_{Cl_2,0} - \xi_1$ $n_{HCl_1} = 2\xi_1$ Reaction #2 (electrolysis): $n_{HCl.0} = 2\xi_2$ $n_{Cl_{2},2} = \xi_2$ $n_{H_{2},2} = \xi_2$

Mix Point #1: $n_{H_2O,0} = 1 + n_{H_2O,1}$ $n_{Cl_2,0} = n_{Cl_2,1} + n_{Cl_2,2}$

Mix Point #2: $n_{HCl,0} = n_{HCl,1}$

Degree of Freedom

Example: Hallett Air Products Cycle

- 10 variables
- 9 linearly independent equations
- -DOF = 10 9 = 1

After substitutions:

- Define $n_{Cl2,0}$ $n_{Cl_{2},0} = n_{Cl_{2},1} + 1$ $K_1(T_1) = \frac{2^2 0.5^{0.5}}{n_{Cl_{2},1} n_{H_2O,1} [n_{Cl_{2},1} + n_{H_2O,1} + 2 + 0.5]^{.5}} P^{0.5}$ $n_{H_2O,0} = 1 + n_{H_2O,1}$

Optimizing Excess

Hallett Air
 Products Cycle
 DOF = 1
 Define n_{Cl2.0}

n_{Cl2,0} = 1.49 mol
 Efficiency = 44.7%

Minimum Utility

Popular method of finding hot utility
 Heat cascaded from high T → low T
 Pinch occurs at temperature where cumulative system heat is zero
 No heat is transferred across the pinch

Minimum Utility

- Interval analysis
- Single hot utility & cold utility
- Isothermal reaction
- Heat of reaction

Effect of ΔT_{min} on Q_{hot}

Influence of T on Qhot

Electrical Work

Electrical Work

 Nernst equation for electrolytic cells
 Assume steady-state operation
 Assume cell efficiency of 90%⁺

$$W_{Electric} = -n \cdot F \cdot E^{\circ}$$

⁺ Millikan, Christopher E., DOE 2002

Separations

Separation Energy

 Minimum work found
 Estimate separation efficiencies as 50%[†]
 Complete separation
 Phase separation when possible
 Isothermal Process
 Real heat & work found

Minimum Separation energy

Separate species into streams

- Depends on excess handling configuration
- Phase separation requires no energy

Example: Sulfur Iodine RXN#1 Separation

Minimum Separation Work

$$W_{SEP,Minimum} = \Delta G_{Mixing} = R \cdot T \sum_{i} n_{i} \cdot \ln(x_{i})$$
$$W_{SEP,Minimum} = R \cdot T \left[\left(\sum_{i} n_{i} \cdot \ln(x_{i}) \right)_{OUT} - \left(\sum_{i} n_{i} \cdot \ln(x_{i}) \right)_{IN} \right]$$

Minimum Separation Work

Separatio	on Work						
	SEP #1	Membrane Sepa	arator				
	Efficiency	0.5					
	Temp	1123	K				
	Component	h2so4	so2	h2o	o2	Total	
	Phase	V	V	V	V		
	Outlet Stream	1	2	2	3		
	Inlet	0.00012	1	1	0.5	2.50012	
	Outlet (1)	0.0001	0.0000	0.0000	0.0000	0.00012	
	Outlet (2)	0.0000	1.0000	1.0000	0.0000	2	
	Outlet (3)	0.0000	0.0000	0.0000	0.5000	0.5	
	Wsep_1	23.38	kJ				
							L

Results

Degree of Freedom

Cycle	Degree of Freedom
US Chlorine	4
Westinghouse	0
Gaz de France	4
Sulfur Iodine	3
Ispra Mark 13	3
Hallett Air Product	1
Julich	5
UT-3 Tokyo	6
Ispra Mark 4	5
Ispra Mark 9	4

Constant for all configurations investigated
 Does not include reaction temperatures

Minimum Utility Criterion

• Cycle rankings based on Q_{hot} ($\Delta T_{min} = 10K$)

- Optimized feeds, equilibrium considered, reactants recycled

	Efficiency Rankings				
	Qh				
1	US Chlorine	99.9%			
2	Sulfur Iodine	99.9%			
3	Westinghouse	99.9%			
4	Hallett Air Product	99.8%			
5	Ispra Mark 13	99.0%			
6	Gaz de France	74.6%			
7	Ispra Mark 4	56.2%			
8	Julich	54.1%			
9	Ispra Mark 9	44.2%			
10	UT-3 Tokyo	41.1%			

Minimum Utility and Electrolysis Work Criterion

Cycle rankings based on Q_{hot} (ΔT_{min} =10K) and W_{elec} only

- Optimized feeds, equilibrium considered

Efficiency Rankings						
	Qh			Qh+Welec		
1	US Chlorine	99.9%	1	Sulfur Iodine	99.9%	
1	Sulfur lodine	99.9%	2	US Chlorine	99.9%	
1	Westinghouse	99.9%	3	Westinghouse	86.8%	
4	Hallett Air Product	99.8%	4	Gaz de France	74.6%	
5	Ispra Mark 13	99.0%	5	Ispra Mark 13	55.7%	
6	Gaz de France	74.6%	6	Julich	54.1%	
7	Ispra Mark 4	56.2%	7	Hallett Air Product	49.4%	
8	Julich	54.1%	8	Ispra Mark 4	47.8%	
9	Ispra Mark 9	44.2%	9	Ispra Mark 9	44.2%	
10	UT-3 Tokyo	41.1%	10	UT-3 Tokyo	41.1%	

Minimum Utility, Electrolysis Work and (ideal) Separation Work (η =0.5) Criterion

- Cycle rankings based on Q_{hot} ($\Delta T_{min} = 10K$), W_{elec}, and W_{sep}
 - Optimized feeds, equilibrium considered

	Efficiency Rankings					
	Qh+Welec			Qh+Welec+Wsep		
1	Sulfur Iodine	99.9%	1	US Chlorine	82.1%	
2	US Chlorine	99.9%	2	Westinghouse	81.1%	
3	Westinghouse	86.8%	3	Gaz de France	74.6%	
4	Gaz de France	74.6%	4	Sulfur Iodine	72.0%	
5	Ispra Mark 13	55.7%	5	Ispra Mark 13	52.2%	
6	Julich	54.1%	6	Hallett Air Product	44.7%	
7	Hallett Air Product	49.4%	7	Julich	44.5%	
8	Ispra Mark 4	47.8%	8	Ispra Mark 4	43.5%	
9	Ispra Mark 9	44.2%	9	UT-3 Tokyo	37.3%	
10	UT-3 Tokyo	41.1%	10	Ispra Mark 9	30.1%	

Temperature Optimization

Limited by phase changes

- Optimized feeds, equilibrium considered

	Efficiency Rankings (Qh+Welec+Wsep)						
	Literature Temperat	ure		Optimized Temperature			
1	US Chlorine	82.1%	1	Westinghouse	82.7%		
2	Westinghouse	81.1%	2	US Chlorine	82.1%		
3	Gaz de France	74.6%	3	Gaz de France	76.0%		
4	Sulfur Iodine	72.0%	4	Sulfur Iodine	73.6%		
5	Ispra Mark 13	52.2%	5	Ispra Mark 13	52.5%		
6	Hallett Air Product	44.7%	6	Julich	49.9%		
7	Julich	44.5%	7	Hallett Air Product	44.7%		
8	Ispra Mark 4	43.5%	8	Ispra Mark 4	44.4%		
9	UT-3 Tokyo	37.3%	9	UT-3 Tokyo	38.1%		
10	Ispra Mark 9	30.1%	10	Ispra Mark 9	31.1%		

Comparison of Results

Overall efficiencies of various configurations				
	Pocyclo	No Recycle	No Recycle	
	Recycle	Strategic Sep	Minimum Sep	
US Chlorine	82.1%	91.3%	91.3%	
Westinghouse	81.1%	81.1%	81.1%	
Sulfur Iodine	72.0%	70.4%	76.5%	
Gaz de France	74.6%	74.6%	74.2%	
Ispra Mark 13	52.2%	53.3%	53.3%	
Ispra Mark 4	43.5%	46.9%	45.9%	
Julich	44.5%	43.6%	45.9%	
Hallett Air Product	44.7%	45.4%	45.4%	
Ispra Mark 9	30.1%	37.1%	38.8%	
UT-3 Tokyo	37.3%	37.2%	36.3%	

W is ideal/0.5

All energy terms have been includedDifferent option is best depending on cycle

Comparison with Brown's Results

		Cycle R	anking	S
		Final Results		Brown's Results
	1	US Chlorine	1	Westinghouse
	2	Westinghouse	2	Ispra Mark 13
	3	Sulfur Iodine	3	UT-3 Tokyo
	4	Gaz de France	4	Sulfur Iodine
	5	Ispra Mark 13	5	Julich
	6	Ispra Mark 4	6	Hallett Air Product
	7	Julich	7	Gaz de France
	8	Hallett Air Product	8	Ispra Mark 4
	9	Ispra Mark 9	9	US Chlorine
	10	UT-3 Tokyo	10	Ispra Mark 9
_				

Real Separation Energy

- Numerous recycle configurations
- Numerous separation techniques
- Difficult to achieve 100% separation
- Used membrane separators to estimate separation work for gas phase separations
- Membrane separators cannot operate at high temperatures

Real Separation Energy

Real Separation work estimated for top 4 cycles
 Estimated as compressor work for membrane separator

Compressor Name		C1
Compressor Description		
Pressure	PSIA	500.0000
Temperature	F	1566.7950
Head	FT	238547.3125
Actual Work	KJ/SEC	3.1966
lsentropic coef., k		1.3941

Real Separation Work (Membranes Only)

Cycle	Reaction 1	Reaction 2	Reaction 3	Wsep Ideal (kJ)	Wsep Real (kJ)	Efficiency w/ Wsep Real
US Chlorine	Membrane HCI,O ₂ → HCI/O ₂	Phase CuCl₂,H₂→ CuCl₂/H₂	Phase CuCl,Cl ₂ → CuCl/Cl ₂	61.75	83.28	77.4%
Sulfur Iodine	Membrane H_2O,SO_2,O_2 \rightarrow $H_2O,SO_2/O_2$	Phase HI,H₂SO₄→ HI/H₂SO₄	Phase I ₂ ,H ₂ → I ₂ /H ₂	110.68	119.80	70.4%
Westinghouse	$\begin{array}{c} \text{Membrane} \\ \text{H}_2\text{O},\text{SO}_2,\text{O}_2 \\ \rightarrow \\ \text{H}_2\text{O},\text{SO}_2/\text{O}_2 \end{array}$	Phase H ₂ SO ₄ ,H ₂ → H ₂ SO ₄ /O ₂	N/A	23.36	32.5	79.0%
Gaz de France	Phase K₂O,H₂→ K₂O/H₂	Phase K,K₂O₂→ K/K₂O₂	Phase KOH,O₂→ KOH/O₂	0	0	74.6%

Real Separation Energy

Actual work for a given system can only be determined with a detailed flow sheet

Taken from Y.H. Jeong, M.S. Kazimi, K.J. Hohnholt, and B. Yildiz resource

Real Separation Work

Comparison of efficiency for Lewis separation and real separation for top 4 cycles

Cyclo	Efficiency			
Cycle	Lewis separation	Real Separation		
Westinghouse	81.1%	79.0%		
US Chlorine	82.1%	77.4%		
Gaz de France	74.6%	74.6%		
Sulfur Iodine	72.0%	70.4%		

Screening Process

Over 200 documented cyclesFind a quick method of finding efficiency

	Percentage of overall energy requirement										
	Rank	Cycle	Hot Utility	Electric Work	Separation Work						
	1	US Chlorine	82%	0%	18%						
	2	Westinghouse	81%	12%	7%						
	3	Gaz de France	100%	0%	0%						
	4	Sulfur Iodine	72%	0%	28%						
	5	Ispra Mark 13	53%	41%	6%						
	6	Hallett Air Product	45%	46%	10%						
	7	Julich	82%	0%	18%						
	8	Ispra Mark 4	77%	11%	11%						
	9	UT-3 Tokyo	91%	0%	9%						
	10	Ispra Mark 9	68%	0%	32%						
1											

Screening Process

		Heat of individual reactions (kJ)								
Rank	Cycle	Above pinch			Below pinch					
1	US Chlorine	-59.30	-156.60	-50.70						
2	Westinghouse	-184.84	-129.28							
3	Gaz de France	-381.05			-96.51	70.64				
4	Sulfur Iodine	-184.84	-12.59	-102.51						
5	Ispra Mark 13	-184.84	-129.49							
6	Hallett Air Product	-59.30	-184.62							
7	Julich	-517.17			37.26	232.88				
8	Ispra Mark 4	-200.79	-306.26		-14.50	56.08				
9	UT-3 Tokyo	-181.81	72.64	-379.17	411.79					
10	Ispra Mark 9	-333.58	-21.76		360.92					
Note: Highest temperature reactions are on the left while the lowest										
	temperature reactions are on the right.									

Exclude process with high exothermic reaction(s) at low temperature

Conclusions

 Efficiency based method can quickly rank hydrogen producing cycles
 Best configuration of excess handling depends on cycle being considered
 Phase separation and good cascade properties benefit efficiency

Questions

References

- Aqueous Standard Reduction Potentials". Physical Sciences Information Gateway. 9 March 2006 < <u>http://www.psigate.ac.uk</u> >.
- Bagajewicz, M. *"Pinch and Minimum Utility Usage".* 11 March 2007 <<u>http://www.ou.edu/class/che-design/a-design/</u> <u>Minimum%20Utility.pdf</u>>.
- Brown, L.C., S.K. Showalter, and J.F. Funk. *Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles*, 2000.
- JANAF Data. National Institute of Standards and Technology. 9 March 2006 <<u>http://webbook.nist.gov</u>>.
- Jeong Y.H., M. S. Kazimi, K.J. Hohnholt, and B. Yildiz. *Optimization of the Hybrid Sulfur Cycle for Hydrogen Generation*. MIT-NES-TR-004, 2005.
- Lewis, M. A.; *High-Temperature Thermochemical Processes*. DOE Hydrogen Program, FY 2005 Progress Report, September 2005.
- Perry, Robert H. *Perry's Chemical Engineers' Handbook, 7th ed.* McGraw-Hill, 1997.
- Winnick, Jack. *Chemical Engineering Thermodynamics.* John Wiley & Sons, Inc, 1997.